/ lunes 11 de mayo de 2020

Científicos de La Salle lanzan plataforma para el monitoreo y predicción de Covid-19

La plataforma está a cargo de Roberto Antonio Vázquez Espinoza, especialista en Inteligencia Artificial y Minería de Datos, miembro del SNI del Conacyt

Científicos e investigadores de la Universidad de La Salle lanzaron una plataforma para el monitoreo y predicción de Covid-19 en México, a través de algoritmos que permiten analizar la información oficial de la Secretaría de Salud y predecir cómo evolucionará la epidemia en el país.

La plataforma está a cargo de Roberto Antonio Vázquez Espinoza, especialista en Inteligencia Artificial y Minería de Datos, miembro del SNI del Conacyt, y puede consultarse a través de la página monitoreocovid.lasalle.mx ,con la que se pretende abonar a la toma de decisiones y planeación estratégica para mitigar el impacto económico y social de la pandemia.

"Para La Salle, como una universidad orientada a la investigación y a la creación de conocimiento, es de vital importancia resolver problemáticas reales de la sociedad y que México necesita. Con proyectos como este, contribuimos a la información y toma de decisiones por el bienestar de las familias mexicanas", informó esta universidad.

Cabe mencionar que, a días del pico más alto de contagios en México, la plataforma también busca mantener informada a la población sobre la situación actual del coronavirus al dar cuenta del número de casos confirmados, sospechosos, negativos y confirmados activos, defunciones, de hospitalizados en el corto y mediano plazo, así como predecir cuándo se va alcanzar el máximo número de casos y el término de la pandemia en México.

El Grupo de Investigación en Sistemas Inteligentes Aplicados de la Universidad La Salle utiliza una metodología que combina estrategias para diseño automático de redes neuronales artificiales con cómputo evolutivo y principios básicos de predicción de series de tiempo y regresión.

Los datos de esta plataforma de monitoreo y predicción son ajustados con las cifras abiertas de la Secretaría de Salud, donde una vez construidos los modelos, se seleccionan aquellos que otorgan el menor error de ajuste con respecto a los datos históricos y se estimulan con los datos históricos.

Para predecir el número potencial de casos confirmados, decesos y hospitalizados para los siguientes días, se calcula el valor promedio de la predicción para cada día, así como su error de estimación con diferentes niveles de confianza.

Al momento se incorporaron a la Plataforma de monitoreo y predicción de la evolución de Covid-19 en México cinco modelos diferentes:

Redes Neuronales Artificiales, Modelo Gausiano, Modelo Logarítmico Sigmoisal (LogSig), Modelo Suspected-Infected-Recovered (SIR), y Modelo Suspected-Infected-Recovered Ponderado (SIR Ponderado).

El modelo de Redes Neuronales genera una predicción a corto plazo utilizando como información de entrada el número de casos acumulados, mientras que el Modelo Gausiano se utiliza para la predicción a largo plazo al introducir el número de casos por día.

Para el modelo LogSig se utiliza como factor de entrada el número de casos acumulado para la predicción a largo plazo, en tanto que los modelos SIR y SIR Ponderado, utiliza para sus predicciones a largo plazo el número de casos acumulados y número de decesos acumulado.

Te recomendamos ⬇️



Apple Podcasts

Google Podcasts

Spotify

Omny


Lee también ⬇️

Científicos e investigadores de la Universidad de La Salle lanzaron una plataforma para el monitoreo y predicción de Covid-19 en México, a través de algoritmos que permiten analizar la información oficial de la Secretaría de Salud y predecir cómo evolucionará la epidemia en el país.

La plataforma está a cargo de Roberto Antonio Vázquez Espinoza, especialista en Inteligencia Artificial y Minería de Datos, miembro del SNI del Conacyt, y puede consultarse a través de la página monitoreocovid.lasalle.mx ,con la que se pretende abonar a la toma de decisiones y planeación estratégica para mitigar el impacto económico y social de la pandemia.

"Para La Salle, como una universidad orientada a la investigación y a la creación de conocimiento, es de vital importancia resolver problemáticas reales de la sociedad y que México necesita. Con proyectos como este, contribuimos a la información y toma de decisiones por el bienestar de las familias mexicanas", informó esta universidad.

Cabe mencionar que, a días del pico más alto de contagios en México, la plataforma también busca mantener informada a la población sobre la situación actual del coronavirus al dar cuenta del número de casos confirmados, sospechosos, negativos y confirmados activos, defunciones, de hospitalizados en el corto y mediano plazo, así como predecir cuándo se va alcanzar el máximo número de casos y el término de la pandemia en México.

El Grupo de Investigación en Sistemas Inteligentes Aplicados de la Universidad La Salle utiliza una metodología que combina estrategias para diseño automático de redes neuronales artificiales con cómputo evolutivo y principios básicos de predicción de series de tiempo y regresión.

Los datos de esta plataforma de monitoreo y predicción son ajustados con las cifras abiertas de la Secretaría de Salud, donde una vez construidos los modelos, se seleccionan aquellos que otorgan el menor error de ajuste con respecto a los datos históricos y se estimulan con los datos históricos.

Para predecir el número potencial de casos confirmados, decesos y hospitalizados para los siguientes días, se calcula el valor promedio de la predicción para cada día, así como su error de estimación con diferentes niveles de confianza.

Al momento se incorporaron a la Plataforma de monitoreo y predicción de la evolución de Covid-19 en México cinco modelos diferentes:

Redes Neuronales Artificiales, Modelo Gausiano, Modelo Logarítmico Sigmoisal (LogSig), Modelo Suspected-Infected-Recovered (SIR), y Modelo Suspected-Infected-Recovered Ponderado (SIR Ponderado).

El modelo de Redes Neuronales genera una predicción a corto plazo utilizando como información de entrada el número de casos acumulados, mientras que el Modelo Gausiano se utiliza para la predicción a largo plazo al introducir el número de casos por día.

Para el modelo LogSig se utiliza como factor de entrada el número de casos acumulado para la predicción a largo plazo, en tanto que los modelos SIR y SIR Ponderado, utiliza para sus predicciones a largo plazo el número de casos acumulados y número de decesos acumulado.

Te recomendamos ⬇️



Apple Podcasts

Google Podcasts

Spotify

Omny


Lee también ⬇️

Local

Nuevas maniobras de CFE afectan suministro de agua en Acapulco

Colonias de la parte media y baja serán las afectadas

Estado

Gobierno estatal rechaza pagar adeudo de Astudillo al Fovissste

La dirigente de la Sección 36 del Sindicato de Salud, Beatriz Vélez Núñez acusó que el exgobernador no pagó las cuotas correspondientes del mes de enero a septiembre del 2021

Policiaca

Sujetos desconocidos atacan a balazos a chofer de camión urbano

La agresión se reportó a las autoridades a través de una llamada de auxilio al 911

Estado

Jubilados del ISSSPEG protestan para exigir pagos en Chilpancingo

Integrantes de la Asociación número 5 de Jubilados y Pensionados del Estado de Guerrero, demandan el pago de la mesada del mes de noviembre de 2024

Estado

Habrá más incendios forestales en 2025 debido al cambio climático

Los periodos de sequía se intensifican y se acortan las temporadas de lluvia que traen precipitaciones más torrenciales, advierte Adolfo Mejía Ponce de León, vicepresidente de la Federación Mexicana de Biólogos

Local

Federación apoyará en la reparación de socavones

A través de la SCT se realiza el levantamiento de algunos socavones como el de Palma Sola; se etiquetarán recursos en Presupuesto de Egresos 2025, informó la alcaldesa Abelina López